1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
use clap_sys::stream::{clap_istream, clap_ostream};
use std::mem::MaybeUninit;
use std::ops::Deref;
use std::os::raw::c_void;
/// Early exit out of a function with the specified return value when one of the passed pointers is
/// null.
macro_rules! check_null_ptr {
($ret:expr, $ptr:expr $(, $ptrs:expr)* $(, )?) => {
$crate::wrapper::clap::util::check_null_ptr_msg!("Null pointer passed to function", $ret, $ptr $(, $ptrs)*)
};
}
/// The same as [`check_null_ptr!`], but with a custom message.
macro_rules! check_null_ptr_msg {
($msg:expr, $ret:expr, $ptr:expr $(, $ptrs:expr)* $(, )?) => {
// Clippy doesn't understand it when we use a unit in our `check_null_ptr!()` macro, even
// if we explicitly pattern match on that unit
#[allow(clippy::unused_unit)]
if $ptr.is_null() $(|| $ptrs.is_null())* {
nih_debug_assert_failure!($msg);
return $ret;
}
};
}
/// Call a CLAP function. This is needed because even though none of CLAP's functions are allowed to
/// be null pointers, people will still use null pointers for some of the function arguments. This
/// also happens in the official `clap-helpers`. As such, these functions are now `Option<fn(...)>`
/// optional function pointers in `clap-sys`. This macro asserts that the pointer is not null, and
/// prints a nicely formatted error message containing the struct and function name if it is. It
/// also emulates C's syntax for accessing fields struct through a pointer. Except that it uses `=>`
/// instead of `->`. Because that sounds like it would be hilarious.
macro_rules! clap_call {
{ $obj_ptr:expr=>$function_name:ident($($args:expr),* $(, )?) } => {
match (*$obj_ptr).$function_name {
Some(function_ptr) => function_ptr($($args),*),
None => panic!("'{}::{}' is a null pointer, but this is not allowed", $crate::wrapper::clap::util::type_name_of_ptr($obj_ptr), stringify!($function_name)),
}
}
}
/// [`clap_call!()`], wrapped in an unsafe block.
macro_rules! unsafe_clap_call {
{ $($args:tt)* } => {
unsafe { $crate::wrapper::clap::util::clap_call! { $($args)* } }
}
}
/// Similar to, [`std::any::type_name_of_val()`], but on stable Rust, and stripping away the pointer
/// part.
#[must_use]
pub fn type_name_of_ptr<T: ?Sized>(_ptr: *const T) -> &'static str {
std::any::type_name::<T>()
}
pub(crate) use check_null_ptr_msg;
pub(crate) use clap_call;
pub(crate) use unsafe_clap_call;
/// Send+Sync wrapper around CLAP host extension pointers.
pub struct ClapPtr<T> {
inner: *const T,
}
impl<T> Deref for ClapPtr<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
unsafe { &*self.inner }
}
}
unsafe impl<T> Send for ClapPtr<T> {}
unsafe impl<T> Sync for ClapPtr<T> {}
impl<T> ClapPtr<T> {
/// Create a wrapper around a CLAP object pointer.
///
/// # Safety
///
/// The pointer must point to a valid object with a lifetime that exceeds this object.
pub unsafe fn new(ptr: *const T) -> Self {
Self { inner: ptr }
}
}
/// A buffer a stream can be read into. This is needed to allow reading into uninitialized vectors
/// using slices without invoking UB.
///
/// # Safety
///
/// This may only be implemented by slices of `u8` and types with the same representation as `u8`.
pub unsafe trait ByteReadBuffer {
/// The length of the slice, in bytes.
fn len(&self) -> usize;
/// Get a pointer to the start of the stream.
fn as_mut_ptr(&mut self) -> *mut u8;
}
unsafe impl ByteReadBuffer for &mut [u8] {
fn len(&self) -> usize {
// Bit of a fun one since we reuse the names of the original functions
<[u8]>::len(self)
}
fn as_mut_ptr(&mut self) -> *mut u8 {
<[u8]>::as_mut_ptr(self)
}
}
unsafe impl ByteReadBuffer for &mut [MaybeUninit<u8>] {
fn len(&self) -> usize {
<[MaybeUninit<u8>]>::len(self)
}
fn as_mut_ptr(&mut self) -> *mut u8 {
<[MaybeUninit<u8>]>::as_mut_ptr(self) as *mut u8
}
}
/// Read from a stream until either the byte slice as been filled, or the stream doesn't contain any
/// data anymore. This correctly handles streams that only allow smaller, buffered reads. If the
/// stream ended before the entire slice has been filled, then this will return `false`.
pub fn read_stream(stream: &clap_istream, mut slice: impl ByteReadBuffer) -> bool {
let mut read_pos = 0;
while read_pos < slice.len() {
let bytes_read = unsafe_clap_call! {
stream=>read(
stream,
slice.as_mut_ptr().add(read_pos) as *mut c_void,
(slice.len() - read_pos) as u64,
)
};
if bytes_read <= 0 {
return false;
}
read_pos += bytes_read as usize;
}
true
}
/// Write the data from a slice to a stream until either all data has been written, or the stream
/// returns an error. This correctly handles streams that only allow smaller, buffered writes. This
/// returns `false` if the stream returns an error or doesn't allow any writes anymore.
pub fn write_stream(stream: &clap_ostream, slice: &[u8]) -> bool {
let mut write_pos = 0;
while write_pos < slice.len() {
let bytes_written = unsafe_clap_call! {
stream=>write(
stream,
slice.as_ptr().add(write_pos) as *const c_void,
(slice.len() - write_pos) as u64,
)
};
if bytes_written <= 0 {
return false;
}
write_pos += bytes_written as usize;
}
true
}