1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
//! Utilities for buffering audio, likely used as part of a short-term Fourier transform.

use std::cmp;

use crate::buffer::{Block, Buffer};

/// Some buffer that can be used with the [`StftHelper`].
pub trait StftInput {
    /// The number of samples in this input.
    fn num_samples(&self) -> usize;

    /// The number of channels in this input.
    fn num_channels(&self) -> usize;

    /// Index the buffer without any bounds checks.
    unsafe fn get_sample_unchecked(&self, channel: usize, sample_idx: usize) -> f32;
}

/// The same as [`StftInput`], but with support for writing results back to the buffer
pub trait StftInputMut: StftInput {
    /// Get a mutable reference to a sample in the buffer without any bounds checks.
    unsafe fn get_sample_unchecked_mut(&mut self, channel: usize, sample_idx: usize) -> &mut f32;
}

/// Process the input buffer in equal sized blocks, running a callback on each block to transform
/// the block and then writing back the results from the previous block to the buffer. This
/// introduces latency equal to the size of the block.
///
/// Additional inputs can be processed by setting the `NUM_SIDECHAIN_INPUTS` constant. These buffers
/// will not be written to, so they are purely used for analysis. These sidechain inputs will have
/// the same number of channels as the main input.
///
/// TODO: Better name?
/// TODO: We may need something like this purely for analysis, e.g. for showing spectrums in a GUI.
///       Figure out the cleanest way to adapt this for the non-processing use case.
pub struct StftHelper<const NUM_SIDECHAIN_INPUTS: usize = 0> {
    // These ring buffers store the input samples and the already processed output produced by
    // adding overlapping windows. Whenever we reach a new overlapping window, we'll write the
    // already calculated outputs to the main buffer passed to the process function and then process
    // a new block.
    main_input_ring_buffers: Vec<Vec<f32>>,
    main_output_ring_buffers: Vec<Vec<f32>>,
    sidechain_ring_buffers: [Vec<Vec<f32>>; NUM_SIDECHAIN_INPUTS],

    /// Results from the ring buffers are copied to this scratch buffer before being passed to the
    /// plugin. Needed to handle overlap.
    scratch_buffer: Vec<f32>,
    /// If padding is used, then this will contain the previous iteration's values from the padding
    /// values in `scratch_buffer` (`scratch_buffer[(scratch_buffer.len() - padding -
    /// 1)..scratch_buffer.len()]`). This is then added to the ring buffer in the next iteration.
    padding_buffers: Vec<Vec<f32>>,

    /// The current position in our ring buffers. Whenever this wraps around to 0, we'll process
    /// a block.
    current_pos: usize,
    /// If padding is used, then this much extra capacity has been added to the buffers.
    padding: usize,
}

/// Marker struct for the version without sidechaining.
struct NoSidechain;

impl StftInput for Buffer<'_> {
    #[inline]
    fn num_samples(&self) -> usize {
        self.samples()
    }

    #[inline]
    fn num_channels(&self) -> usize {
        self.channels()
    }

    #[inline]
    unsafe fn get_sample_unchecked(&self, channel: usize, sample_idx: usize) -> f32 {
        *self
            .as_slice_immutable()
            .get_unchecked(channel)
            .get_unchecked(sample_idx)
    }
}

impl StftInputMut for Buffer<'_> {
    #[inline]
    unsafe fn get_sample_unchecked_mut(&mut self, channel: usize, sample_idx: usize) -> &mut f32 {
        self.as_slice()
            .get_unchecked_mut(channel)
            .get_unchecked_mut(sample_idx)
    }
}

impl StftInput for Block<'_, '_> {
    #[inline]
    fn num_samples(&self) -> usize {
        self.samples()
    }

    #[inline]
    fn num_channels(&self) -> usize {
        self.channels()
    }

    #[inline]
    unsafe fn get_sample_unchecked(&self, channel: usize, sample_idx: usize) -> f32 {
        *self.get_unchecked(channel).get_unchecked(sample_idx)
    }
}

impl StftInputMut for Block<'_, '_> {
    #[inline]
    unsafe fn get_sample_unchecked_mut(&mut self, channel: usize, sample_idx: usize) -> &mut f32 {
        self.get_unchecked_mut(channel)
            .get_unchecked_mut(sample_idx)
    }
}

impl StftInput for [&[f32]] {
    #[inline]
    fn num_samples(&self) -> usize {
        if self.is_empty() {
            0
        } else {
            self[0].len()
        }
    }

    #[inline]
    fn num_channels(&self) -> usize {
        self.len()
    }

    #[inline]
    unsafe fn get_sample_unchecked(&self, channel: usize, sample_idx: usize) -> f32 {
        *self.get_unchecked(channel).get_unchecked(sample_idx)
    }
}

impl StftInput for [&mut [f32]] {
    #[inline]
    fn num_samples(&self) -> usize {
        if self.is_empty() {
            0
        } else {
            self[0].len()
        }
    }

    #[inline]
    fn num_channels(&self) -> usize {
        self.len()
    }

    #[inline]
    unsafe fn get_sample_unchecked(&self, channel: usize, sample_idx: usize) -> f32 {
        *self.get_unchecked(channel).get_unchecked(sample_idx)
    }
}

impl StftInputMut for [&mut [f32]] {
    #[inline]
    unsafe fn get_sample_unchecked_mut(&mut self, channel: usize, sample_idx: usize) -> &mut f32 {
        self.get_unchecked_mut(channel)
            .get_unchecked_mut(sample_idx)
    }
}

impl StftInput for NoSidechain {
    fn num_samples(&self) -> usize {
        0
    }

    fn num_channels(&self) -> usize {
        0
    }

    unsafe fn get_sample_unchecked(&self, _channel: usize, _sample_idx: usize) -> f32 {
        0.0
    }
}

impl<const NUM_SIDECHAIN_INPUTS: usize> StftHelper<NUM_SIDECHAIN_INPUTS> {
    /// Initialize the [`StftHelper`] for [`Buffer`]s with the specified number of channels and the
    /// given maximum block size. When the option is set, then every yielded sample buffer will have
    /// this many zero samples appended at the end of the block. Call
    /// [`set_block_size()`][Self::set_block_size()] afterwards if you do not need the full capacity
    /// upfront. If the padding option is non zero, then all yielded blocks will have that many
    /// zeroes added to the end of it and the results stored in the padding area will be added to
    /// the outputs in the next iteration(s). You may also change how much padding is added with
    /// [`set_padding()`][Self::set_padding()].
    ///
    /// # Panics
    ///
    /// Panics if `num_channels == 0 || max_block_size == 0`.
    pub fn new(num_channels: usize, max_block_size: usize, max_padding: usize) -> Self {
        assert_ne!(num_channels, 0);
        assert_ne!(max_block_size, 0);

        Self {
            main_input_ring_buffers: vec![vec![0.0; max_block_size]; num_channels],
            main_output_ring_buffers: vec![vec![0.0; max_block_size]; num_channels],
            // Kinda hacky way to initialize an array of non-copy types
            sidechain_ring_buffers: [(); NUM_SIDECHAIN_INPUTS]
                .map(|_| vec![vec![0.0; max_block_size]; num_channels]),

            // When padding is used this scratch buffer will have a bunch of zeroes added to it
            // after copying a block of audio to it
            scratch_buffer: vec![0.0; max_block_size + max_padding],
            padding_buffers: vec![vec![0.0; max_padding]; num_channels],

            current_pos: 0,
            padding: max_padding,
        }
    }

    /// Change the current block size. This will clear the buffers, causing the next block to output
    /// silence.
    ///
    /// # Panics
    ///
    /// Will panic if `block_size > max_block_size`.
    pub fn set_block_size(&mut self, block_size: usize) {
        assert!(block_size <= self.main_input_ring_buffers[0].capacity());

        self.update_buffers(block_size);
    }

    /// Change the current padding amount. This will clear the buffers, causing the next block to
    /// output silence.
    ///
    /// # Panics
    ///
    /// Will panic if `padding > max_padding`.
    pub fn set_padding(&mut self, padding: usize) {
        assert!(padding <= self.padding_buffers[0].capacity());

        self.padding = padding;
        self.update_buffers(self.main_input_ring_buffers[0].len());
    }

    /// The number of channels this `StftHelper` was configured for
    pub fn num_channels(&self) -> usize {
        self.main_input_ring_buffers.len()
    }

    /// The maximum block size supported by this instance.
    pub fn max_block_size(&self) -> usize {
        self.main_input_ring_buffers.capacity()
    }

    /// The maximum amount of padding supported by this instance.
    pub fn max_padding(&self) -> usize {
        self.padding_buffers[0].capacity()
    }

    /// The amount of latency introduced when processing audio through this [`StftHelper`].
    pub fn latency_samples(&self) -> u32 {
        self.main_input_ring_buffers[0].len() as u32
    }

    /// Process the audio in `main_buffer` in small overlapping blocks, adding up the results for
    /// the main buffer so they can eventually be written back to the host one block later. This
    /// means that this function will introduce one block of latency. This can be compensated by
    /// calling [`InitContext::set_latency()`][`crate::prelude::InitContext::set_latency_samples()`]
    /// in your plugin's initialization function.
    ///
    /// If a padding value was specified in [`new()`][Self::new()], then the yielded blocks will
    /// have that many zeroes appended at the end of them. The padding values will be added to the
    /// next block before `process_cb()` is called.
    ///
    /// Since there are a couple different ways to do it, any window functions needs to be applied
    /// in the callbacks. Check the [`nih_plug::util::window`][crate::util::window] module for more information.
    ///
    /// For efficiency's sake this function will reuse the same vector for all calls to
    /// `process_cb`. This means you can only access a single channel's worth of windowed data at a
    /// time. The arguments to that function are `process_cb(channel_idx, real_fft_buffer)`.
    /// `real_fft_buffer` will be a slice of `block_size` real valued samples. This can be passed
    /// directly to an FFT algorithm.
    ///
    /// # Panics
    ///
    /// Panics if `main_buffer` or the buffers in `sidechain_buffers` do not have the same number of
    /// channels as this [`StftHelper`], or if the sidechain buffers do not contain the same number of
    /// samples as the main buffer.
    ///
    /// TODO: Add more useful ways to do STFT and other buffered operations. I just went with this
    ///       approach because it's what I needed myself, but generic combinators like this could
    ///       also be useful for other operations.
    pub fn process_overlap_add<M, F>(
        &mut self,
        main_buffer: &mut M,
        overlap_times: usize,
        mut process_cb: F,
    ) where
        M: StftInputMut,
        F: FnMut(usize, &mut [f32]),
    {
        self.process_overlap_add_sidechain(
            main_buffer,
            [&NoSidechain; NUM_SIDECHAIN_INPUTS],
            overlap_times,
            |channel_idx, sidechain_idx, real_fft_scratch_buffer| {
                if sidechain_idx.is_none() {
                    process_cb(channel_idx, real_fft_scratch_buffer);
                }
            },
        );
    }

    /// The same as [`process_overlap_add()`][Self::process_overlap_add()], but with sidechain
    /// inputs that can be analyzed before the main input gets processed.
    ///
    /// The extra argument in the process function is `sidechain_buffer_idx`, which will be `None`
    /// for the main buffer.
    pub fn process_overlap_add_sidechain<M, S, F>(
        &mut self,
        main_buffer: &mut M,
        sidechain_buffers: [&S; NUM_SIDECHAIN_INPUTS],
        overlap_times: usize,
        mut process_cb: F,
    ) where
        M: StftInputMut,
        S: StftInput,
        F: FnMut(usize, Option<usize>, &mut [f32]),
    {
        assert_eq!(
            main_buffer.num_channels(),
            self.main_input_ring_buffers.len()
        );
        assert!(overlap_times > 0);

        // We'll copy samples from `*_buffer` into `*_ring_buffers` while simultaneously copying
        // already processed samples from `main_ring_buffers` in into `main_buffer`
        let main_buffer_len = main_buffer.num_samples();
        let num_channels = main_buffer.num_channels();
        let block_size = self.main_input_ring_buffers[0].len();
        let window_interval = (block_size / overlap_times) as i32;
        let mut already_processed_samples = 0;
        while already_processed_samples < main_buffer_len {
            let remaining_samples = main_buffer_len - already_processed_samples;
            let samples_until_next_window = ((window_interval - self.current_pos as i32 - 1)
                .rem_euclid(window_interval)
                + 1) as usize;
            let samples_to_process = samples_until_next_window.min(remaining_samples);

            // Copy the input from `main_buffer` to the ring buffer while copying last block's
            // result from the buffer to `main_buffer`
            // TODO: This might be able to be sped up a bit with SIMD

            // For the main buffer
            for sample_offset in 0..samples_to_process {
                for channel_idx in 0..num_channels {
                    let sample = unsafe {
                        main_buffer.get_sample_unchecked_mut(
                            channel_idx,
                            already_processed_samples + sample_offset,
                        )
                    };
                    let input_ring_buffer_sample = unsafe {
                        self.main_input_ring_buffers
                            .get_unchecked_mut(channel_idx)
                            .get_unchecked_mut(self.current_pos + sample_offset)
                    };
                    let output_ring_buffer_sample = unsafe {
                        self.main_output_ring_buffers
                            .get_unchecked_mut(channel_idx)
                            .get_unchecked_mut(self.current_pos + sample_offset)
                    };
                    *input_ring_buffer_sample = *sample;
                    *sample = *output_ring_buffer_sample;
                    // Very important, or else we'll overlap-add ourselves into a feedback hell
                    *output_ring_buffer_sample = 0.0;
                }
            }

            // And for the sidechain buffers we only need to copy the inputs
            for (sidechain_buffer, sidechain_ring_buffers) in sidechain_buffers
                .iter()
                .zip(self.sidechain_ring_buffers.iter_mut())
            {
                for sample_offset in 0..samples_to_process {
                    for channel_idx in 0..num_channels {
                        let sample = unsafe {
                            sidechain_buffer.get_sample_unchecked(
                                channel_idx,
                                already_processed_samples + sample_offset,
                            )
                        };
                        let ring_buffer_sample = unsafe {
                            sidechain_ring_buffers
                                .get_unchecked_mut(channel_idx)
                                .get_unchecked_mut(self.current_pos + sample_offset)
                        };
                        *ring_buffer_sample = sample;
                    }
                }
            }

            already_processed_samples += samples_to_process;
            self.current_pos = (self.current_pos + samples_to_process) % block_size;

            // At this point we either have `already_processed_samples == main_buffer_len`, or
            // `self.current_pos % window_interval == 0`. If it's the latter, then we can process a
            // new block.
            if samples_to_process == samples_until_next_window {
                // Because we're processing in smaller windows, the input ring buffers sadly does
                // not always contain the full contiguous range we're interested in because they map
                // wrap around. Because premade FFT algorithms typically can't handle this, we'll
                // start with copying the wrapped ranges from our ring buffers to the scratch
                // buffer. Then we apply the windowing function and this it along to
                for (sidechain_idx, sidechain_ring_buffers) in
                    self.sidechain_ring_buffers.iter().enumerate()
                {
                    for (channel_idx, sidechain_ring_buffer) in
                        sidechain_ring_buffers.iter().enumerate()
                    {
                        copy_ring_to_scratch_buffer(
                            &mut self.scratch_buffer,
                            self.current_pos,
                            sidechain_ring_buffer,
                        );
                        if self.padding > 0 {
                            self.scratch_buffer[block_size..].fill(0.0);
                        }

                        process_cb(channel_idx, Some(sidechain_idx), &mut self.scratch_buffer);
                    }
                }

                for (channel_idx, ((input_ring_buffer, output_ring_buffer), padding_buffer)) in self
                    .main_input_ring_buffers
                    .iter()
                    .zip(self.main_output_ring_buffers.iter_mut())
                    .zip(self.padding_buffers.iter_mut())
                    .enumerate()
                {
                    copy_ring_to_scratch_buffer(
                        &mut self.scratch_buffer,
                        self.current_pos,
                        input_ring_buffer,
                    );
                    if self.padding > 0 {
                        self.scratch_buffer[block_size..].fill(0.0);
                    }

                    process_cb(channel_idx, None, &mut self.scratch_buffer);

                    // Add the padding from the last iteration (for this channel) to the scratch
                    // buffer before it is copied to the output ring buffer. In case the padding is
                    // longer than the block size, then this will cause everything else to be
                    // shifted to the left so it can be added in the iteration after this.
                    if self.padding > 0 {
                        let padding_to_copy = cmp::min(self.padding, block_size);
                        for (scratch_sample, padding_sample) in self.scratch_buffer
                            [..padding_to_copy]
                            .iter_mut()
                            .zip(&mut padding_buffer[..padding_to_copy])
                        {
                            *scratch_sample += *padding_sample;
                        }

                        // Any remaining padding tail should be moved towards the start of the
                        // buffer
                        padding_buffer.copy_within(padding_to_copy.., 0);

                        // And we obviously don't want this to feedback
                        padding_buffer[self.padding - padding_to_copy..].fill(0.0);
                    }

                    // The actual overlap-add part of the equation
                    add_scratch_to_ring_buffer(
                        &self.scratch_buffer,
                        self.current_pos,
                        output_ring_buffer,
                    );

                    // And the data from the padding area should be saved so it can be added to next
                    // iteration's scratch buffer. Like mentioned above, the padding can be larger
                    // than the block size so we also need to do overlap-add here.
                    if self.padding > 0 {
                        for (padding_sample, scratch_sample) in padding_buffer
                            .iter_mut()
                            .zip(&mut self.scratch_buffer[block_size..])
                        {
                            *padding_sample += *scratch_sample;
                        }
                    }
                }
            }
        }
    }

    /// Similar to [`process_overlap_add()`][Self::process_overlap_add()], but without the inverse
    /// STFT part. `buffer` will only ever be read from. This can be useful for providing FFT data
    /// for a spectrum analyzer in a plugin GUI. These is still a delay to the analysis equal to the
    /// block size.
    pub fn process_analyze_only<B, F>(
        &mut self,
        buffer: &B,
        overlap_times: usize,
        mut analyze_cb: F,
    ) where
        B: StftInput,
        F: FnMut(usize, &mut [f32]),
    {
        assert_eq!(buffer.num_channels(), self.main_input_ring_buffers.len());
        assert!(overlap_times > 0);

        // See `process_overlap_add_sidechain` for an annotated version
        let main_buffer_len = buffer.num_samples();
        let num_channels = buffer.num_channels();
        let block_size = self.main_input_ring_buffers[0].len();
        let window_interval = (block_size / overlap_times) as i32;
        let mut already_processed_samples = 0;
        while already_processed_samples < main_buffer_len {
            let remaining_samples = main_buffer_len - already_processed_samples;
            let samples_until_next_window = ((window_interval - self.current_pos as i32 - 1)
                .rem_euclid(window_interval)
                + 1) as usize;
            let samples_to_process = samples_until_next_window.min(remaining_samples);

            for sample_offset in 0..samples_to_process {
                for channel_idx in 0..num_channels {
                    let sample = unsafe {
                        buffer.get_sample_unchecked(
                            channel_idx,
                            already_processed_samples + sample_offset,
                        )
                    };
                    let input_ring_buffer_sample = unsafe {
                        self.main_input_ring_buffers
                            .get_unchecked_mut(channel_idx)
                            .get_unchecked_mut(self.current_pos + sample_offset)
                    };
                    *input_ring_buffer_sample = sample;
                }
            }

            already_processed_samples += samples_to_process;
            self.current_pos = (self.current_pos + samples_to_process) % block_size;

            if samples_to_process == samples_until_next_window {
                for (channel_idx, input_ring_buffer) in
                    self.main_input_ring_buffers.iter().enumerate()
                {
                    copy_ring_to_scratch_buffer(
                        &mut self.scratch_buffer,
                        self.current_pos,
                        input_ring_buffer,
                    );
                    if self.padding > 0 {
                        self.scratch_buffer[block_size..].fill(0.0);
                    }

                    analyze_cb(channel_idx, &mut self.scratch_buffer);
                }
            }
        }
    }

    fn update_buffers(&mut self, block_size: usize) {
        for main_ring_buffer in &mut self.main_input_ring_buffers {
            main_ring_buffer.resize(block_size, 0.0);
            main_ring_buffer.fill(0.0);
        }
        for main_ring_buffer in &mut self.main_output_ring_buffers {
            main_ring_buffer.resize(block_size, 0.0);
            main_ring_buffer.fill(0.0);
        }
        for sidechain_ring_buffers in &mut self.sidechain_ring_buffers {
            for sidechain_ring_buffer in sidechain_ring_buffers {
                sidechain_ring_buffer.resize(block_size, 0.0);
                sidechain_ring_buffer.fill(0.0);
            }
        }
        self.scratch_buffer.resize(block_size + self.padding, 0.0);
        self.scratch_buffer.fill(0.0);

        for padding_buffer in &mut self.padding_buffers {
            // In case this changed since the last call, like in `set_padding()`
            padding_buffer.resize(self.padding, 0.0);
            padding_buffer.fill(0.0);
        }

        self.current_pos = 0;
    }
}

/// Copy data from the the specified ring buffer (borrowed from `self`) to the scratch buffers at
/// the current position. This is a free function because you cannot pass an immutable reference to
/// a field from `&self` to a `&mut self` method.
#[inline]
fn copy_ring_to_scratch_buffer(
    scratch_buffer: &mut [f32],
    current_pos: usize,
    ring_buffer: &[f32],
) {
    let block_size = ring_buffer.len();
    let num_copy_before_wrap = block_size - current_pos;
    scratch_buffer[0..num_copy_before_wrap].copy_from_slice(&ring_buffer[current_pos..block_size]);
    scratch_buffer[num_copy_before_wrap..block_size].copy_from_slice(&ring_buffer[0..current_pos]);
}

/// Add data from the scratch buffer to the specified ring buffer. When writing samples from this
/// ring buffer back to the host's outputs they must be cleared to prevent infinite feedback.
#[inline]
fn add_scratch_to_ring_buffer(scratch_buffer: &[f32], current_pos: usize, ring_buffer: &mut [f32]) {
    // TODO: This could also use some SIMD
    let block_size = ring_buffer.len();
    let num_copy_before_wrap = block_size - current_pos;
    for (scratch_sample, ring_sample) in scratch_buffer[0..num_copy_before_wrap]
        .iter()
        .zip(&mut ring_buffer[current_pos..block_size])
    {
        *ring_sample += *scratch_sample;
    }
    for (scratch_sample, ring_sample) in scratch_buffer[num_copy_before_wrap..block_size]
        .iter()
        .zip(&mut ring_buffer[0..current_pos])
    {
        *ring_sample += *scratch_sample;
    }
}