1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
//! Utilities to handle smoothing parameter changes over time.
use std::sync::atomic::{AtomicI32, Ordering};
use std::sync::Arc;
// Re-exported here because it's sued in `SmoothingStyle`.
pub use atomic_float::AtomicF32;
/// Controls if and how parameters gets smoothed.
#[derive(Debug, Clone)]
pub enum SmoothingStyle {
/// Wraps another smoothing style to create a multi-rate oversampling-aware smoother for a
/// parameter that's used in an oversampled part of the plugin. The `Arc<AtomicF32>` indicates
/// the oversampling amount, where `1.0` means no oversampling. This value can change at
/// runtime, and it effectively scales the sample rate when computing new smoothing coefficients
/// when the parameter's value changes.
OversamplingAware(Arc<AtomicF32>, &'static SmoothingStyle),
/// No smoothing is applied. The parameter's `value` field contains the latest sample value
/// available for the parameters.
None,
/// Smooth parameter changes so the current value approaches the target value at a constant
/// rate. The target value will be reached in exactly this many milliseconds.
Linear(f32),
/// Smooth parameter changes such that the rate matches the curve of a logarithmic function,
/// starting out slow and then constantly increasing the slope until the value is reached. The
/// target value will be reached in exactly this many milliseconds. This is useful for smoothing
/// things like frequencies and decibel gain value. **The caveat is that the value may never
/// reach 0**, or you will end up multiplying and dividing things by zero. Make sure your value
/// ranges don't include 0.
Logarithmic(f32),
/// Smooth parameter changes such that the rate matches the curve of an exponential function,
/// starting out fast and then tapering off until the end. This is a single-pole IIR filter
/// under the hood, while the other smoothing options are FIR filters. This means that the exact
/// value would never be reached. Instead, this reaches 99.99% of the value target value in the
/// specified number of milliseconds, and it then snaps to the target value in the last step.
/// This results in a smoother transition, with the caveat being that there will be a tiny jump
/// at the end. Unlike the `Logarithmic` option, this does support crossing the zero value.
Exponential(f32),
}
/// A smoother, providing a smoothed value for each sample.
//
// TODO: We need to use atomics here so we can share the params object with the GUI. Is there a
// better alternative to allow the process function to mutate these smoothers?
#[derive(Debug)]
pub struct Smoother<T: Smoothable> {
/// The kind of snoothing that needs to be applied, if any.
pub style: SmoothingStyle,
/// The number of steps of smoothing left to take.
///
// This is a signed integer because we can skip multiple steps, which would otherwise make it
// possible to get an underflow here.
steps_left: AtomicI32,
/// The amount we should adjust the current value each sample to be able to reach the target in
/// the specified tiem frame. This is also a floating point number to keep the smoothing
/// uniform.
///
/// In the case of the `Exponential` smoothing style this is the coefficient `x` that the
/// previous sample is multiplied by.
step_size: AtomicF32,
/// The value for the current sample. Always stored as floating point for obvious reasons.
current: AtomicF32,
/// The value we're smoothing towards
target: T::Atomic,
}
/// An iterator that continuously produces smoothed values. Can be used as an alternative to the
/// block-based smoothing API. Since the iterator itself is infinite, you can use
/// [`Smoother::is_smoothing()`] and [`Smoother::steps_left()`] to get information on the current
/// smoothing status.
pub struct SmootherIter<'a, T: Smoothable> {
smoother: &'a Smoother<T>,
}
impl SmoothingStyle {
/// Compute the number of steps to reach the target value based on the sample rate and this
/// smoothing style's duration.
#[inline]
pub fn num_steps(&self, sample_rate: f32) -> u32 {
nih_debug_assert!(sample_rate > 0.0);
match self {
Self::OversamplingAware(oversampling_times, style) => {
style.num_steps(sample_rate * oversampling_times.load(Ordering::Relaxed))
}
Self::None => 1,
Self::Linear(time) | Self::Logarithmic(time) | Self::Exponential(time) => {
nih_debug_assert!(*time >= 0.0);
(sample_rate * time / 1000.0).round() as u32
}
}
}
/// Compute the step size for this smoother. `num_steps` can be obtained using
/// [`SmoothingStyle::num_steps()`]. Check the source code of the [`SmoothingStyle::next()`] and
/// [`SmoothingStyle::next_step()`] functions for details on how these values should be used.
#[inline]
pub fn step_size(&self, start: f32, target: f32, num_steps: u32) -> f32 {
nih_debug_assert!(num_steps >= 1);
match self {
Self::OversamplingAware(_, style) => style.step_size(start, target, num_steps),
Self::None => 0.0,
Self::Linear(_) => (target - start) / (num_steps as f32),
Self::Logarithmic(_) => {
// We need to solve `start * (step_size ^ num_steps) = target` for `step_size`
nih_debug_assert_ne!(start, 0.0);
((target / start) as f64).powf((num_steps as f64).recip()) as f32
}
// In this case the step size value is the coefficient the current value will be
// multiplied by, while the target value is multiplied by one minus the coefficient. This
// reaches 99.99% of the target value after `num_steps`. The smoother will snap to the
// target value after that point.
Self::Exponential(_) => 0.0001f64.powf((num_steps as f64).recip()) as f32,
}
}
/// Compute the next value from `current` leading up to `target` using the `step_size` computed
/// using [`SmoothingStyle::step_size()`]. Depending on the smoothing style this function may
/// never completely reach `target`, so you will need to snap to `target` yourself after
/// computing the target number of steps.
///
/// See the docstring on the [`SmoothingStyle::next_step()`] function for the formulas used.
#[inline]
pub fn next(&self, current: f32, target: f32, step_size: f32) -> f32 {
match self {
Self::OversamplingAware(_, style) => style.next(current, target, step_size),
Self::None => target,
Self::Linear(_) => current + step_size,
Self::Logarithmic(_) => current * step_size,
Self::Exponential(_) => (current * step_size) + (target * (1.0 - step_size)),
}
}
/// The same as [`next()`][Self::next()], but with the option to take more than one step at a
/// time. Calling `next_step()` with step count `n` gives the same result as applying `next()`
/// `n` times to a value, but is more efficient to compute. `next_step()` with 1 step is
/// equivalent to `step()`.
///
/// See the docstring on the [`SmoothingStyle::next_step()`] function for the formulas used.
#[inline]
pub fn next_step(&self, current: f32, target: f32, step_size: f32, steps: u32) -> f32 {
nih_debug_assert!(steps >= 1);
match self {
Self::OversamplingAware(_, style) => style.next_step(current, target, step_size, steps),
Self::None => target,
Self::Linear(_) => current + (step_size * steps as f32),
Self::Logarithmic(_) => current * (step_size.powi(steps as i32)),
Self::Exponential(_) => {
// This is the same as calculating `current = (current * step_size) +
// (target * (1 - step_size))` in a loop since the target value won't change
let coefficient = step_size.powi(steps as i32);
(current * coefficient) + (target * (1.0 - coefficient))
}
}
}
}
/// A type that can be smoothed. This exists just to avoid duplicate explicit implementations for
/// the smoothers.
pub trait Smoothable: Default + Clone + Copy {
/// The atomic representation of `Self`.
type Atomic: Default;
fn to_f32(self) -> f32;
fn from_f32(value: f32) -> Self;
fn atomic_new(value: Self) -> Self::Atomic;
/// A relaxed atomic load.
fn atomic_load(this: &Self::Atomic) -> Self;
/// A relaxed atomic store.
fn atomic_store(this: &Self::Atomic, value: Self);
}
impl<T: Smoothable> Default for Smoother<T> {
fn default() -> Self {
Self {
style: SmoothingStyle::None,
steps_left: AtomicI32::new(0),
step_size: Default::default(),
current: AtomicF32::new(0.0),
target: Default::default(),
}
}
}
impl<T: Smoothable> Iterator for SmootherIter<'_, T> {
type Item = T;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
Some(self.smoother.next())
}
}
impl<T: Smoothable> Clone for Smoother<T> {
fn clone(&self) -> Self {
// We can't derive clone because of the atomics, but these atomics are only here to allow
// Send+Sync interior mutability
Self {
style: self.style.clone(),
steps_left: AtomicI32::new(self.steps_left.load(Ordering::Relaxed)),
step_size: AtomicF32::new(self.step_size.load(Ordering::Relaxed)),
current: AtomicF32::new(self.current.load(Ordering::Relaxed)),
target: T::atomic_new(T::atomic_load(&self.target)),
}
}
}
impl<T: Smoothable> Smoother<T> {
/// Use the specified style for the smoothing.
pub fn new(style: SmoothingStyle) -> Self {
Self {
style,
..Default::default()
}
}
/// Convenience function for not applying any smoothing at all. Same as `Smoother::default`.
pub fn none() -> Self {
Default::default()
}
/// The number of steps left until calling [`next()`][Self::next()] will stop yielding new
/// values.
#[inline]
pub fn steps_left(&self) -> i32 {
self.steps_left.load(Ordering::Relaxed)
}
/// Whether calling [`next()`][Self::next()] will yield a new value or an old value. Useful if
/// you need to recompute something whenever this parameter changes.
#[inline]
pub fn is_smoothing(&self) -> bool {
self.steps_left() > 0
}
/// Produce an iterator that yields smoothed values. These are not iterators already for the
/// sole reason that this will always yield a value, and needing to unwrap all of those options
/// is not going to be very fun.
#[inline]
pub fn iter(&self) -> SmootherIter<T> {
SmootherIter { smoother: self }
}
/// Reset the smoother the specified value.
pub fn reset(&self, value: T) {
T::atomic_store(&self.target, value);
self.current.store(value.to_f32(), Ordering::Relaxed);
self.steps_left.store(0, Ordering::Relaxed);
}
/// Set the target value.
pub fn set_target(&self, sample_rate: f32, target: T) {
T::atomic_store(&self.target, target);
let steps_left = self.style.num_steps(sample_rate) as i32;
self.steps_left.store(steps_left, Ordering::Relaxed);
let current = self.current.load(Ordering::Relaxed);
let target_f32 = target.to_f32();
self.step_size.store(
if steps_left > 0 {
self.style.step_size(current, target_f32, steps_left as u32)
} else {
0.0
},
Ordering::Relaxed,
);
}
/// Get the next value from this smoother. The value will be equal to the previous value once
/// the smoothing period is over. This should be called exactly once per sample.
// Yes, Clippy, like I said, this was intentional
#[allow(clippy::should_implement_trait)]
#[inline]
pub fn next(&self) -> T {
let target = T::atomic_load(&self.target);
// NOTE: This used to be implemented in terms of `next_step()`, but this is more efficient
// for the common use case of single steps
if self.steps_left.load(Ordering::Relaxed) > 0 {
let current = self.current.load(Ordering::Relaxed);
let target_f32 = target.to_f32();
let step_size = self.step_size.load(Ordering::Relaxed);
// The number of steps usually won't fit exactly, so make sure we don't end up with
// quantization errors on overshoots or undershoots. We also need to account for the
// possibility that we only have `n < steps` steps left. This is especially important
// for the `Exponential` smoothing style, since that won't reach the target value
// exactly.
let old_steps_left = self.steps_left.fetch_sub(1, Ordering::Relaxed);
let new = if old_steps_left == 1 {
self.steps_left.store(0, Ordering::Relaxed);
target_f32
} else {
self.style.next(current, target_f32, step_size)
};
self.current.store(new, Ordering::Relaxed);
T::from_f32(new)
} else {
target
}
}
/// [`next()`][Self::next()], but with the ability to skip forward in the smoother.
/// [`next()`][Self::next()] is equivalent to calling this function with a `steps` value of 1.
/// Calling this function with a `steps` value of `n` means will cause you to skip the next `n -
/// 1` values and return the `n`th value.
#[inline]
pub fn next_step(&self, steps: u32) -> T {
nih_debug_assert_ne!(steps, 0);
let target = T::atomic_load(&self.target);
if self.steps_left.load(Ordering::Relaxed) > 0 {
let current = self.current.load(Ordering::Relaxed);
let target_f32 = target.to_f32();
let step_size = self.step_size.load(Ordering::Relaxed);
// The number of steps usually won't fit exactly, so make sure we don't end up with
// quantization errors on overshoots or undershoots. We also need to account for the
// possibility that we only have `n < steps` steps left. This is especially important
// for the `Exponential` smoothing style, since that won't reach the target value
// exactly.
let old_steps_left = self.steps_left.fetch_sub(steps as i32, Ordering::Relaxed);
let new = if old_steps_left <= steps as i32 {
self.steps_left.store(0, Ordering::Relaxed);
target_f32
} else {
self.style.next_step(current, target_f32, step_size, steps)
};
self.current.store(new, Ordering::Relaxed);
T::from_f32(new)
} else {
target
}
}
/// Get previous value returned by this smoother. This may be useful to save some boilerplate
/// when [`is_smoothing()`][Self::is_smoothing()] is used to determine whether an expensive
/// calculation should take place, and [`next()`][Self::next()] gets called as part of that
/// calculation.
pub fn previous_value(&self) -> T {
T::from_f32(self.current.load(Ordering::Relaxed))
}
/// Produce smoothed values for an entire block of audio. This is useful when iterating the same
/// block of audio multiple times. For instance when summing voices for a synthesizer.
/// `block_values[..block_len]` will be filled with the smoothed values. This is simply a
/// convenient function for [`next_block_exact()`][Self::next_block_exact()] when iterating over
/// variable length blocks with a known maximum size.
///
/// # Panics
///
/// Panics if `block_len > block_values.len()`.
pub fn next_block(&self, block_values: &mut [T], block_len: usize) {
self.next_block_exact(&mut block_values[..block_len])
}
/// The same as [`next_block()`][Self::next_block()], but filling the entire slice.
pub fn next_block_exact(&self, block_values: &mut [T]) {
let target = T::atomic_load(&self.target);
// `self.next()` will yield the current value if the parameter is no longer smoothing, but
// it's a bit of a waste to continuously call that if only the first couple or none of the
// values in `block_values` would require smoothing and the rest don't. Instead, we'll just
// smooth the values as necessary, and then reuse the target value for the rest of the
// block.
let steps_left = self.steps_left.load(Ordering::Relaxed) as usize;
let num_smoothed_values = block_values.len().min(steps_left);
if num_smoothed_values > 0 {
let mut current = self.current.load(Ordering::Relaxed);
let target_f32 = target.to_f32();
let step_size = self.step_size.load(Ordering::Relaxed);
if num_smoothed_values == steps_left {
// This is the same as calling `next()` `num_smoothed_values` times, but with some
// conditionals optimized out
block_values[..num_smoothed_values - 1].fill_with(|| {
current = self.style.next(current, target_f32, step_size);
T::from_f32(current)
});
// In `next()` the last step snaps the value to the target value, so we'll do the
// same thing here
current = target_f32.to_f32();
block_values[num_smoothed_values - 1] = target;
} else {
block_values[..num_smoothed_values].fill_with(|| {
current = self.style.next(current, target_f32, step_size);
T::from_f32(current)
});
}
block_values[num_smoothed_values..].fill(target);
self.current.store(current, Ordering::Relaxed);
self.steps_left
.fetch_sub(num_smoothed_values as i32, Ordering::Relaxed);
} else {
block_values.fill(target);
}
}
/// The same as [`next_block()`][Self::next_block()], but with a function applied to each
/// produced value. The mapping function takes an index in the block and a floating point
/// representation of the smoother's current value. This allows the modulation to be consistent
/// during smoothing. Additionally, the mapping function is always called even if the smoothing
/// is finished.
pub fn next_block_mapped(
&self,
block_values: &mut [T],
block_len: usize,
f: impl FnMut(usize, f32) -> T,
) {
self.next_block_exact_mapped(&mut block_values[..block_len], f)
}
/// The same as [`next_block_exact()`][Self::next_block()], but with a function applied to each
/// produced value. Useful when applying modulation to a smoothed parameter.
pub fn next_block_exact_mapped(
&self,
block_values: &mut [T],
mut f: impl FnMut(usize, f32) -> T,
) {
// This works exactly the same as `next_block_exact()`, except for the addition of the
// mapping function
let target_f32 = T::atomic_load(&self.target).to_f32();
let steps_left = self.steps_left.load(Ordering::Relaxed) as usize;
let num_smoothed_values = block_values.len().min(steps_left);
if num_smoothed_values > 0 {
let mut current = self.current.load(Ordering::Relaxed);
let step_size = self.step_size.load(Ordering::Relaxed);
// See `next_block_exact()` for more details
if num_smoothed_values == steps_left {
for (idx, value) in block_values
.iter_mut()
.enumerate()
.take(num_smoothed_values - 1)
{
current = self.style.next(current, target_f32, step_size);
*value = f(idx, current);
}
current = target_f32.to_f32();
block_values[num_smoothed_values - 1] = f(num_smoothed_values - 1, target_f32);
} else {
for (idx, value) in block_values
.iter_mut()
.enumerate()
.take(num_smoothed_values)
{
current = self.style.next(current, target_f32, step_size);
*value = f(idx, current);
}
}
for (idx, value) in block_values
.iter_mut()
.enumerate()
.skip(num_smoothed_values)
{
*value = f(idx, target_f32);
}
self.current.store(current, Ordering::Relaxed);
self.steps_left
.fetch_sub(num_smoothed_values as i32, Ordering::Relaxed);
} else {
for (idx, value) in block_values.iter_mut().enumerate() {
*value = f(idx, target_f32);
}
}
}
}
impl Smoothable for f32 {
type Atomic = AtomicF32;
#[inline]
fn to_f32(self) -> f32 {
self
}
#[inline]
fn from_f32(value: f32) -> Self {
value
}
#[inline]
fn atomic_new(value: Self) -> Self::Atomic {
AtomicF32::new(value)
}
#[inline]
fn atomic_load(this: &Self::Atomic) -> Self {
this.load(Ordering::Relaxed)
}
#[inline]
fn atomic_store(this: &Self::Atomic, value: Self) {
this.store(value, Ordering::Relaxed)
}
}
impl Smoothable for i32 {
type Atomic = AtomicI32;
#[inline]
fn to_f32(self) -> f32 {
self as f32
}
#[inline]
fn from_f32(value: f32) -> Self {
value.round() as i32
}
#[inline]
fn atomic_new(value: Self) -> Self::Atomic {
AtomicI32::new(value)
}
#[inline]
fn atomic_load(this: &Self::Atomic) -> Self {
this.load(Ordering::Relaxed)
}
#[inline]
fn atomic_store(this: &Self::Atomic, value: Self) {
this.store(value, Ordering::Relaxed)
}
}
#[cfg(test)]
mod tests {
use super::*;
/// Applying `next()` `n` times should be the same as `next_step()` for `n` steps.
#[test]
fn linear_f32_next_equivalence() {
let style = SmoothingStyle::Linear(100.0);
let mut current = 0.4;
let target = 0.8;
let steps = 15;
let step_size = style.step_size(current, target, steps);
let expected_result = style.next_step(current, target, step_size, steps);
for _ in 0..steps {
current = style.next(current, target, step_size);
}
approx::assert_relative_eq!(current, expected_result, epsilon = 1e-5);
}
#[test]
fn logarithmic_f32_next_equivalence() {
let style = SmoothingStyle::Logarithmic(100.0);
let mut current = 0.4;
let target = 0.8;
let steps = 15;
let step_size = style.step_size(current, target, steps);
let expected_result = style.next_step(current, target, step_size, steps);
for _ in 0..steps {
current = style.next(current, target, step_size);
}
approx::assert_relative_eq!(current, expected_result, epsilon = 1e-5);
}
#[test]
fn exponential_f32_next_equivalence() {
let style = SmoothingStyle::Exponential(100.0);
let mut current = 0.4;
let target = 0.8;
let steps = 15;
let step_size = style.step_size(current, target, steps);
let expected_result = style.next_step(current, target, step_size, steps);
for _ in 0..steps {
current = style.next(current, target, step_size);
}
approx::assert_relative_eq!(current, expected_result, epsilon = 1e-5);
}
#[test]
fn linear_f32_smoothing() {
let smoother: Smoother<f32> = Smoother::new(SmoothingStyle::Linear(100.0));
smoother.reset(10.0);
assert_eq!(smoother.next(), 10.0);
// Instead of testing the actual values, we'll make sure that we reach the target values at
// the expected time.
smoother.set_target(100.0, 20.0);
for _ in 0..(10 - 2) {
smoother.next();
}
assert_ne!(smoother.next(), 20.0);
assert_eq!(smoother.next(), 20.0);
}
#[test]
fn linear_i32_smoothing() {
let smoother: Smoother<i32> = Smoother::new(SmoothingStyle::Linear(100.0));
smoother.reset(10);
assert_eq!(smoother.next(), 10);
// Integers are rounded, but with these values we can still test this
smoother.set_target(100.0, 20);
for _ in 0..(10 - 2) {
smoother.next();
}
assert_ne!(smoother.next(), 20);
assert_eq!(smoother.next(), 20);
}
#[test]
fn logarithmic_f32_smoothing() {
let smoother: Smoother<f32> = Smoother::new(SmoothingStyle::Logarithmic(100.0));
smoother.reset(10.0);
assert_eq!(smoother.next(), 10.0);
// Instead of testing the actual values, we'll make sure that we reach the target values at
// the expected time.
smoother.set_target(100.0, 20.0);
for _ in 0..(10 - 2) {
smoother.next();
}
assert_ne!(smoother.next(), 20.0);
assert_eq!(smoother.next(), 20.0);
}
#[test]
fn logarithmic_i32_smoothing() {
let smoother: Smoother<i32> = Smoother::new(SmoothingStyle::Logarithmic(100.0));
smoother.reset(10);
assert_eq!(smoother.next(), 10);
// Integers are rounded, but with these values we can still test this
smoother.set_target(100.0, 20);
for _ in 0..(10 - 2) {
smoother.next();
}
assert_ne!(smoother.next(), 20);
assert_eq!(smoother.next(), 20);
}
/// Same as [linear_f32_smoothing], but skipping steps instead.
#[test]
fn skipping_linear_f32_smoothing() {
let smoother: Smoother<f32> = Smoother::new(SmoothingStyle::Linear(100.0));
smoother.reset(10.0);
assert_eq!(smoother.next(), 10.0);
smoother.set_target(100.0, 20.0);
smoother.next_step(8);
assert_ne!(smoother.next(), 20.0);
assert_eq!(smoother.next(), 20.0);
}
/// Same as [linear_i32_smoothing], but skipping steps instead.
#[test]
fn skipping_linear_i32_smoothing() {
let smoother: Smoother<i32> = Smoother::new(SmoothingStyle::Linear(100.0));
smoother.reset(10);
assert_eq!(smoother.next(), 10);
smoother.set_target(100.0, 20);
smoother.next_step(8);
assert_ne!(smoother.next(), 20);
assert_eq!(smoother.next(), 20);
}
/// Same as [logarithmic_f32_smoothing], but skipping steps instead.
#[test]
fn skipping_logarithmic_f32_smoothing() {
let smoother: Smoother<f32> = Smoother::new(SmoothingStyle::Logarithmic(100.0));
smoother.reset(10.0);
assert_eq!(smoother.next(), 10.0);
smoother.set_target(100.0, 20.0);
smoother.next_step(8);
assert_ne!(smoother.next(), 20.0);
assert_eq!(smoother.next(), 20.0);
}
/// Same as [logarithmic_i32_smoothing], but skipping steps instead.
#[test]
fn skipping_logarithmic_i32_smoothing() {
let smoother: Smoother<i32> = Smoother::new(SmoothingStyle::Logarithmic(100.0));
smoother.reset(10);
assert_eq!(smoother.next(), 10);
smoother.set_target(100.0, 20);
smoother.next_step(8);
assert_ne!(smoother.next(), 20);
assert_eq!(smoother.next(), 20);
}
// TODO: Tests for the exponential smoothing
}