1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
//! Different ranges for numeric parameters.
use crate::util;
/// A distribution for a floating point parameter's range. All range endpoints are inclusive.
#[derive(Debug, Clone, Copy)]
pub enum FloatRange {
/// The values are uniformly distributed between `min` and `max`.
Linear { min: f32, max: f32 },
/// The range is skewed by a factor. Values above 1.0 will make the end of the range wider,
/// while values between 0 and 1 will skew the range towards the start. Use
/// [`FloatRange::skew_factor()`] for a more intuitively way to calculate the skew factor where
/// positive values skew the range towards the end while negative values skew the range toward
/// the start.
Skewed { min: f32, max: f32, factor: f32 },
/// The same as [`FloatRange::Skewed`], but with the skewing happening from a central point.
/// This central point is rescaled to be at 50% of the parameter's range for convenience of use.
/// Git blame this comment to find a version that doesn't do this.
SymmetricalSkewed {
min: f32,
max: f32,
factor: f32,
center: f32,
},
/// A reversed range that goes from high to low instead of from low to high.
Reversed(&'static FloatRange),
}
/// A distribution for an integer parameter's range. All range endpoints are inclusive. Only linear
/// ranges are supported for integers since hosts expect discrete parameters to have a fixed step
/// size.
#[derive(Debug, Clone, Copy)]
pub enum IntRange {
/// The values are uniformly distributed between `min` and `max`.
Linear { min: i32, max: i32 },
/// A reversed range that goes from high to low instead of from low to high.
Reversed(&'static IntRange),
}
impl FloatRange {
/// Calculate a skew factor for [`FloatRange::Skewed`] and [`FloatRange::SymmetricalSkewed`].
/// Positive values make the end of the range wider while negative make the start of the range
/// wider.
pub fn skew_factor(factor: f32) -> f32 {
2.0f32.powf(factor)
}
/// Calculate a skew factor for [`FloatRange::Skewed`] that makes a linear gain parameter range
/// appear as if it was linear when formatted as decibels.
pub fn gain_skew_factor(min_db: f32, max_db: f32) -> f32 {
nih_debug_assert!(min_db < max_db);
let min_gain = util::db_to_gain(min_db);
let max_gain = util::db_to_gain(max_db);
let middle_db = (max_db + min_db) / 2.0;
let middle_gain = util::db_to_gain(middle_db);
// Check the Skewed equation in the normalized function below, we need to solve the factor
// such that the a normalized value of 0.5 resolves to the middle of the range
0.5f32.log((middle_gain - min_gain) / (max_gain - min_gain))
}
/// Normalize a plain, unnormalized value. Will be clamped to the bounds of the range if the
/// normalized value exceeds `[0, 1]`.
pub fn normalize(&self, plain: f32) -> f32 {
match self {
FloatRange::Linear { min, max } => (plain.clamp(*min, *max) - min) / (max - min),
FloatRange::Skewed { min, max, factor } => {
((plain.clamp(*min, *max) - min) / (max - min)).powf(*factor)
}
FloatRange::SymmetricalSkewed {
min,
max,
factor,
center,
} => {
// There's probably a much faster equivalent way to write this. Also, I have no clue
// how I managed to implement this correctly on the first try.
let unscaled_proportion = (plain.clamp(*min, *max) - min) / (max - min);
let center_proportion = (center - min) / (max - min);
if unscaled_proportion > center_proportion {
// The part above the center gets normalized to a [0, 1] range, skewed, and then
// unnormalized and scaled back to the original [center_proportion, 1] range
let scaled_proportion = (unscaled_proportion - center_proportion)
* (1.0 - center_proportion).recip();
(scaled_proportion.powf(*factor) * 0.5) + 0.5
} else {
// The part below the center gets scaled, inverted (so the range is [0, 1] where
// 0 corresponds to the center proportion and 1 corresponds to the original
// normalized 0 value), skewed, inverted back again, and then scaled back to the
// original range
let inverted_scaled_proportion =
(center_proportion - unscaled_proportion) * (center_proportion).recip();
(1.0 - inverted_scaled_proportion.powf(*factor)) * 0.5
}
}
FloatRange::Reversed(range) => 1.0 - range.normalize(plain),
}
}
/// Unnormalize a normalized value. Will be clamped to `[0, 1]` if the plain, unnormalized value
/// would exceed that range.
pub fn unnormalize(&self, normalized: f32) -> f32 {
let normalized = normalized.clamp(0.0, 1.0);
match self {
FloatRange::Linear { min, max } => (normalized * (max - min)) + min,
FloatRange::Skewed { min, max, factor } => {
(normalized.powf(factor.recip()) * (max - min)) + min
}
FloatRange::SymmetricalSkewed {
min,
max,
factor,
center,
} => {
// Reconstructing the subranges works the same as with the normal skewed ranges
let center_proportion = (center - min) / (max - min);
let skewed_proportion = if normalized > 0.5 {
let scaled_proportion = (normalized - 0.5) * 2.0;
(scaled_proportion.powf(factor.recip()) * (1.0 - center_proportion))
+ center_proportion
} else {
let inverted_scaled_proportion = (0.5 - normalized) * 2.0;
(1.0 - inverted_scaled_proportion.powf(factor.recip())) * center_proportion
};
(skewed_proportion * (max - min)) + min
}
FloatRange::Reversed(range) => range.unnormalize(1.0 - normalized),
}
}
/// The range's previous discrete step from a certain value with a certain step size. If the
/// step size is not set, then the normalized range is split into 50 segments instead. If
/// `finer` is true, then this is upped to 200 segments.
pub fn previous_step(&self, from: f32, step_size: Option<f32>, finer: bool) -> f32 {
// This one's slightly more involved than the integer version. We'll split the normalized
// range up into 50 segments, but if `self.step_size` would cause the range to be devided
// into less than 50 segments then we'll use that.
match self {
FloatRange::Linear { min, max }
| FloatRange::Skewed { min, max, .. }
| FloatRange::SymmetricalSkewed { min, max, .. } => {
let normalized_naive_step_size = if finer { 0.005 } else { 0.02 };
let naive_step =
self.unnormalize(self.normalize(from) - normalized_naive_step_size);
match step_size {
// Use the naive step size if it is larger than the configured step size
Some(step_size) if (naive_step - from).abs() > step_size => {
self.snap_to_step(naive_step, step_size)
}
Some(step_size) => from - step_size,
None => naive_step,
}
.clamp(*min, *max)
}
FloatRange::Reversed(range) => range.next_step(from, step_size, finer),
}
}
/// The range's next discrete step from a certain value with a certain step size. If the step
/// size is not set, then the normalized range is split into 100 segments instead.
pub fn next_step(&self, from: f32, step_size: Option<f32>, finer: bool) -> f32 {
// See above
match self {
FloatRange::Linear { min, max }
| FloatRange::Skewed { min, max, .. }
| FloatRange::SymmetricalSkewed { min, max, .. } => {
let normalized_naive_step_size = if finer { 0.005 } else { 0.02 };
let naive_step =
self.unnormalize(self.normalize(from) + normalized_naive_step_size);
match step_size {
Some(step_size) if (naive_step - from).abs() > step_size => {
self.snap_to_step(naive_step, step_size)
}
Some(step_size) => from + step_size,
None => naive_step,
}
.clamp(*min, *max)
}
FloatRange::Reversed(range) => range.previous_step(from, step_size, finer),
}
}
/// Snap a value to a step size, clamping to the minimum and maximum value of the range.
pub fn snap_to_step(&self, value: f32, step_size: f32) -> f32 {
match self {
FloatRange::Linear { min, max }
| FloatRange::Skewed { min, max, .. }
| FloatRange::SymmetricalSkewed { min, max, .. } => {
((value / step_size).round() * step_size).clamp(*min, *max)
}
FloatRange::Reversed(range) => range.snap_to_step(value, step_size),
}
}
/// Emits debug assertions to make sure that range minima are always less than the maxima and
/// that they are not equal.
pub(super) fn assert_validity(&self) {
match self {
FloatRange::Linear { min, max }
| FloatRange::Skewed { min, max, .. }
| FloatRange::SymmetricalSkewed { min, max, .. } => {
nih_debug_assert!(
min < max,
"The range minimum ({}) needs to be less than the range maximum ({}) and they \
cannot be equal",
min,
max
);
}
FloatRange::Reversed(range) => range.assert_validity(),
}
}
}
impl IntRange {
/// Normalize a plain, unnormalized value. Will be clamped to the bounds of the range if the
/// normalized value exceeds `[0, 1]`.
pub fn normalize(&self, plain: i32) -> f32 {
match self {
IntRange::Linear { min, max } => (plain - min) as f32 / (max - min) as f32,
IntRange::Reversed(range) => 1.0 - range.normalize(plain),
}
.clamp(0.0, 1.0)
}
/// Unnormalize a normalized value. Will be clamped to `[0, 1]` if the plain, unnormalized value
/// would exceed that range.
pub fn unnormalize(&self, normalized: f32) -> i32 {
let normalized = normalized.clamp(0.0, 1.0);
match self {
IntRange::Linear { min, max } => (normalized * (max - min) as f32).round() as i32 + min,
IntRange::Reversed(range) => range.unnormalize(1.0 - normalized),
}
}
/// The range's previous discrete step from a certain value.
pub fn previous_step(&self, from: i32) -> i32 {
match self {
IntRange::Linear { min, max } => (from - 1).clamp(*min, *max),
IntRange::Reversed(range) => range.next_step(from),
}
}
/// The range's next discrete step from a certain value.
pub fn next_step(&self, from: i32) -> i32 {
match self {
IntRange::Linear { min, max } => (from + 1).clamp(*min, *max),
IntRange::Reversed(range) => range.previous_step(from),
}
}
/// The number of steps in this range. Used for the host's generic UI.
pub fn step_count(&self) -> usize {
match self {
IntRange::Linear { min, max } => (max - min) as usize,
IntRange::Reversed(range) => range.step_count(),
}
}
/// If this range is wrapped in an adapter, like `Reversed`, then return the wrapped range.
pub fn inner_range(&self) -> Self {
match self {
IntRange::Linear { .. } => *self,
IntRange::Reversed(range) => range.inner_range(),
}
}
/// Emits debug assertions to make sure that range minima are always less than the maxima and
/// that they are not equal.
pub(super) fn assert_validity(&self) {
match self {
IntRange::Linear { min, max } => {
nih_debug_assert!(
min < max,
"The range minimum ({}) needs to be less than the range maximum ({}) and they \
cannot be equal",
min,
max
);
}
IntRange::Reversed(range) => range.assert_validity(),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
const fn make_linear_float_range() -> FloatRange {
FloatRange::Linear {
min: 10.0,
max: 20.0,
}
}
const fn make_linear_int_range() -> IntRange {
IntRange::Linear { min: -10, max: 10 }
}
const fn make_skewed_float_range(factor: f32) -> FloatRange {
FloatRange::Skewed {
min: 10.0,
max: 20.0,
factor,
}
}
const fn make_symmetrical_skewed_float_range(factor: f32) -> FloatRange {
FloatRange::SymmetricalSkewed {
min: 10.0,
max: 20.0,
factor,
center: 12.5,
}
}
#[test]
fn step_size() {
// These are weird step sizes, but if it works here then it will work for anything
let range = make_linear_float_range();
// XXX: We round to decimal places when outputting, but not when snapping to steps
assert_eq!(range.snap_to_step(13.0, 4.73), 14.190001);
}
#[test]
fn step_size_clamping() {
let range = make_linear_float_range();
assert_eq!(range.snap_to_step(10.0, 4.73), 10.0);
assert_eq!(range.snap_to_step(20.0, 6.73), 20.0);
}
mod linear {
use super::*;
#[test]
fn range_normalize_float() {
let range = make_linear_float_range();
assert_eq!(range.normalize(17.5), 0.75);
}
#[test]
fn range_normalize_int() {
let range = make_linear_int_range();
assert_eq!(range.normalize(-5), 0.25);
}
#[test]
fn range_unnormalize_float() {
let range = make_linear_float_range();
assert_eq!(range.unnormalize(0.25), 12.5);
}
#[test]
fn range_unnormalize_int() {
let range = make_linear_int_range();
assert_eq!(range.unnormalize(0.75), 5);
}
#[test]
fn range_unnormalize_int_rounding() {
let range = make_linear_int_range();
assert_eq!(range.unnormalize(0.73), 5);
}
}
mod skewed {
use super::*;
#[test]
fn range_normalize_float() {
let range = make_skewed_float_range(FloatRange::skew_factor(-2.0));
assert_eq!(range.normalize(17.5), 0.9306049);
}
#[test]
fn range_unnormalize_float() {
let range = make_skewed_float_range(FloatRange::skew_factor(-2.0));
assert_eq!(range.unnormalize(0.9306049), 17.5);
}
#[test]
fn range_normalize_linear_equiv_float() {
let linear_range = make_linear_float_range();
let skewed_range = make_skewed_float_range(1.0);
assert_eq!(linear_range.normalize(17.5), skewed_range.normalize(17.5));
}
#[test]
fn range_unnormalize_linear_equiv_float() {
let linear_range = make_linear_float_range();
let skewed_range = make_skewed_float_range(1.0);
assert_eq!(
linear_range.unnormalize(0.25),
skewed_range.unnormalize(0.25)
);
}
}
mod symmetrical_skewed {
use super::*;
#[test]
fn range_normalize_float() {
let range = make_symmetrical_skewed_float_range(FloatRange::skew_factor(-2.0));
assert_eq!(range.normalize(17.5), 0.951801);
}
#[test]
fn range_unnormalize_float() {
let range = make_symmetrical_skewed_float_range(FloatRange::skew_factor(-2.0));
assert_eq!(range.unnormalize(0.951801), 17.5);
}
}
mod reversed_linear {
use super::*;
#[test]
fn range_normalize_int() {
const WRAPPED_RANGE: IntRange = make_linear_int_range();
let range = IntRange::Reversed(&WRAPPED_RANGE);
assert_eq!(range.normalize(-5), 1.0 - 0.25);
}
#[test]
fn range_unnormalize_int() {
const WRAPPED_RANGE: IntRange = make_linear_int_range();
let range = IntRange::Reversed(&WRAPPED_RANGE);
assert_eq!(range.unnormalize(1.0 - 0.75), 5);
}
#[test]
fn range_unnormalize_int_rounding() {
const WRAPPED_RANGE: IntRange = make_linear_int_range();
let range = IntRange::Reversed(&WRAPPED_RANGE);
assert_eq!(range.unnormalize(1.0 - 0.73), 5);
}
}
mod reversed_skewed {
use super::*;
#[test]
fn range_normalize_float() {
const WRAPPED_RANGE: FloatRange = make_skewed_float_range(0.25);
let range = FloatRange::Reversed(&WRAPPED_RANGE);
assert_eq!(range.normalize(17.5), 1.0 - 0.9306049);
}
#[test]
fn range_unnormalize_float() {
const WRAPPED_RANGE: FloatRange = make_skewed_float_range(0.25);
let range = FloatRange::Reversed(&WRAPPED_RANGE);
assert_eq!(range.unnormalize(1.0 - 0.9306049), 17.5);
}
#[test]
fn range_normalize_linear_equiv_float() {
const WRAPPED_LINEAR_RANGE: FloatRange = make_linear_float_range();
const WRAPPED_SKEWED_RANGE: FloatRange = make_skewed_float_range(1.0);
let linear_range = FloatRange::Reversed(&WRAPPED_LINEAR_RANGE);
let skewed_range = FloatRange::Reversed(&WRAPPED_SKEWED_RANGE);
assert_eq!(linear_range.normalize(17.5), skewed_range.normalize(17.5));
}
#[test]
fn range_unnormalize_linear_equiv_float() {
const WRAPPED_LINEAR_RANGE: FloatRange = make_linear_float_range();
const WRAPPED_SKEWED_RANGE: FloatRange = make_skewed_float_range(1.0);
let linear_range = FloatRange::Reversed(&WRAPPED_LINEAR_RANGE);
let skewed_range = FloatRange::Reversed(&WRAPPED_SKEWED_RANGE);
assert_eq!(
linear_range.unnormalize(0.25),
skewed_range.unnormalize(0.25)
);
}
}
}