1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
//! Continuous (or discrete, with a step size) floating point parameters.
use atomic_float::AtomicF32;
use std::fmt::{Debug, Display};
use std::sync::atomic::Ordering;
use std::sync::Arc;
use super::internals::ParamPtr;
use super::range::FloatRange;
use super::smoothing::{Smoother, SmoothingStyle};
use super::{Param, ParamFlags, ParamMut};
/// A floating point parameter that's stored unnormalized. The range is used for the normalization
/// process.
pub struct FloatParam {
/// The field's current plain value, after monophonic modulation has been applied.
value: AtomicF32,
/// The field's current value normalized to the `[0, 1]` range.
normalized_value: AtomicF32,
/// The field's plain, unnormalized value before any monophonic automation coming from the host
/// has been applied. This will always be the same as `value` for VST3 plugins.
unmodulated_value: AtomicF32,
/// The field's value normalized to the `[0, 1]` range before any monophonic automation coming
/// from the host has been applied. This will always be the same as `value` for VST3 plugins.
unmodulated_normalized_value: AtomicF32,
/// A value in `[-1, 1]` indicating the amount of modulation applied to
/// `unmodulated_normalized_`. This needs to be stored separately since the normalized values are
/// clamped, and this value persists after new automation events.
modulation_offset: AtomicF32,
/// The field's default plain, unnormalized value.
default: f32,
/// An optional smoother that will automatically interpolate between the new automation values
/// set by the host.
pub smoothed: Smoother<f32>,
/// Flags to control the parameter's behavior. See [`ParamFlags`].
flags: ParamFlags,
/// Optional callback for listening to value changes. The argument passed to this function is
/// the parameter's new **plain** value. This should not do anything expensive as it may be
/// called multiple times in rapid succession.
///
/// To use this, you'll probably want to store an `Arc<Atomic*>` alongside the parameter in the
/// parameters struct, move a clone of that `Arc` into this closure, and then modify that.
///
/// TODO: We probably also want to pass the old value to this function.
value_changed: Option<Arc<dyn Fn(f32) + Send + Sync>>,
/// The distribution of the parameter's values.
range: FloatRange,
/// The distance between discrete steps in this parameter. Mostly useful for quantizing GUI
/// input. If this is set and if [`value_to_string`][Self::value_to_string] is not set, then
/// this is also used when formatting the parameter. This must be a positive, nonzero number.
step_size: Option<f32>,
/// The parameter's human readable display name.
name: String,
/// The parameter value's unit, added after [`value_to_string`][Self::value_to_string] if that
/// is set. NIH-plug will not automatically add a space before the unit.
unit: &'static str,
/// If this parameter has been marked as polyphonically modulatable, then this will be a unique
/// integer identifying the parameter. Because this value is determined by the plugin itself,
/// the plugin can easily map
/// [`NoteEvent::PolyModulation`][crate::prelude::NoteEvent::PolyModulation] events to the
/// correct parameter by pattern matching on a constant.
poly_modulation_id: Option<u32>,
/// Optional custom conversion function from a plain **unnormalized** value to a string.
value_to_string: Option<Arc<dyn Fn(f32) -> String + Send + Sync>>,
/// Optional custom conversion function from a string to a plain **unnormalized** value. If the
/// string cannot be parsed, then this should return a `None`. If this happens while the
/// parameter is being updated then the update will be canceled.
///
/// The input string may or may not contain the unit, so you will need to be able to handle
/// that.
string_to_value: Option<Arc<dyn Fn(&str) -> Option<f32> + Send + Sync>>,
}
impl Display for FloatParam {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match (&self.value_to_string, &self.step_size) {
(Some(func), _) => write!(f, "{}{}", func(self.value()), self.unit),
(None, Some(step_size)) => {
let num_digits = decimals_from_step_size(*step_size);
write!(f, "{:.num_digits$}{}", self.value(), self.unit)
}
_ => write!(f, "{}{}", self.value(), self.unit),
}
}
}
impl Debug for FloatParam {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
// This uses the above `Display` instance to show the value
if self.modulated_plain_value() != self.unmodulated_plain_value() {
write!(f, "{}: {} (modulated)", &self.name, &self)
} else {
write!(f, "{}: {}", &self.name, &self)
}
}
}
// `Params` can not be implemented outside of NIH-plug itself because `ParamPtr` is also closed
impl super::Sealed for FloatParam {}
impl Param for FloatParam {
type Plain = f32;
fn name(&self) -> &str {
&self.name
}
fn unit(&self) -> &'static str {
self.unit
}
fn poly_modulation_id(&self) -> Option<u32> {
self.poly_modulation_id
}
#[inline]
fn modulated_plain_value(&self) -> Self::Plain {
self.value.load(Ordering::Relaxed)
}
#[inline]
fn modulated_normalized_value(&self) -> f32 {
self.normalized_value.load(Ordering::Relaxed)
}
#[inline]
fn unmodulated_plain_value(&self) -> Self::Plain {
self.unmodulated_value.load(Ordering::Relaxed)
}
#[inline]
fn unmodulated_normalized_value(&self) -> f32 {
self.unmodulated_normalized_value.load(Ordering::Relaxed)
}
#[inline]
fn default_plain_value(&self) -> Self::Plain {
self.default
}
fn step_count(&self) -> Option<usize> {
None
}
fn previous_step(&self, from: Self::Plain, finer: bool) -> Self::Plain {
self.range.previous_step(from, self.step_size, finer)
}
fn next_step(&self, from: Self::Plain, finer: bool) -> Self::Plain {
self.range.next_step(from, self.step_size, finer)
}
fn normalized_value_to_string(&self, normalized: f32, include_unit: bool) -> String {
let value = self.preview_plain(normalized);
match (&self.value_to_string, &self.step_size, include_unit) {
(Some(f), _, true) => format!("{}{}", f(value), self.unit),
(Some(f), _, false) => f(value),
(None, Some(step_size), true) => {
let num_digits = decimals_from_step_size(*step_size);
format!("{:.num_digits$}{}", value, self.unit)
}
(None, Some(step_size), false) => {
let num_digits = decimals_from_step_size(*step_size);
format!("{value:.num_digits$}")
}
(None, None, true) => format!("{}{}", value, self.unit),
(None, None, false) => format!("{value}"),
}
}
fn string_to_normalized_value(&self, string: &str) -> Option<f32> {
let value = match &self.string_to_value {
Some(f) => f(string.trim()),
// In the CLAP wrapper the unit will be included, so make sure to handle that
None => string.trim().trim_end_matches(self.unit).parse().ok(),
}?;
Some(self.preview_normalized(value))
}
#[inline]
fn preview_normalized(&self, plain: Self::Plain) -> f32 {
self.range.normalize(plain)
}
#[inline]
fn preview_plain(&self, normalized: f32) -> Self::Plain {
let value = self.range.unnormalize(normalized);
match &self.step_size {
Some(step_size) => self.range.snap_to_step(value, *step_size as Self::Plain),
None => value,
}
}
fn flags(&self) -> ParamFlags {
self.flags
}
fn as_ptr(&self) -> ParamPtr {
ParamPtr::FloatParam(self as *const _ as *mut _)
}
}
impl ParamMut for FloatParam {
fn set_plain_value(&self, plain: Self::Plain) -> bool {
let unmodulated_value = plain;
let unmodulated_normalized_value = self.preview_normalized(plain);
let modulation_offset = self.modulation_offset.load(Ordering::Relaxed);
let (value, normalized_value) = if modulation_offset == 0.0 {
(unmodulated_value, unmodulated_normalized_value)
} else {
let normalized_value =
(unmodulated_normalized_value + modulation_offset).clamp(0.0, 1.0);
(self.preview_plain(normalized_value), normalized_value)
};
// REAPER spams automation events with the same value. This prevents callbacks from firing
// multiple times. This can be problematic when they're used to trigger expensive
// computations when a parameter changes.
let old_value = self.value.swap(value, Ordering::Relaxed);
if value != old_value {
self.normalized_value
.store(normalized_value, Ordering::Relaxed);
self.unmodulated_value
.store(unmodulated_value, Ordering::Relaxed);
self.unmodulated_normalized_value
.store(unmodulated_normalized_value, Ordering::Relaxed);
if let Some(f) = &self.value_changed {
f(value);
}
true
} else {
false
}
}
fn set_normalized_value(&self, normalized: f32) -> bool {
// NOTE: The double conversion here is to make sure the state is reproducible. State is
// saved and restored using plain values, and the new normalized value will be
// different from `normalized`. This is not necessary for the modulation as these
// values are never shown to the host.
self.set_plain_value(self.preview_plain(normalized))
}
fn modulate_value(&self, modulation_offset: f32) -> bool {
self.modulation_offset
.store(modulation_offset, Ordering::Relaxed);
// TODO: This renormalizes this value, which is not necessary
self.set_plain_value(self.unmodulated_plain_value())
}
fn update_smoother(&self, sample_rate: f32, reset: bool) {
if reset {
self.smoothed.reset(self.modulated_plain_value());
} else {
self.smoothed
.set_target(sample_rate, self.modulated_plain_value());
}
}
}
impl FloatParam {
/// Build a new [`FloatParam`]. Use the other associated functions to modify the behavior of the
/// parameter.
pub fn new(name: impl Into<String>, default: f32, range: FloatRange) -> Self {
range.assert_validity();
Self {
value: AtomicF32::new(default),
normalized_value: AtomicF32::new(range.normalize(default)),
unmodulated_value: AtomicF32::new(default),
unmodulated_normalized_value: AtomicF32::new(range.normalize(default)),
modulation_offset: AtomicF32::new(0.0),
default,
smoothed: Smoother::none(),
flags: ParamFlags::default(),
value_changed: None,
range,
step_size: None,
name: name.into(),
unit: "",
poly_modulation_id: None,
value_to_string: None,
string_to_value: None,
}
}
/// The field's current plain value, after monophonic modulation has been applied. Equivalent to
/// calling `param.plain_value()`.
#[inline]
pub fn value(&self) -> f32 {
self.modulated_plain_value()
}
/// Enable polyphonic modulation for this parameter. The ID is used to uniquely identify this
/// parameter in [`NoteEvent::PolyModulation`][crate::prelude::NoteEvent::PolyModulation]
/// events, and must thus be unique between _all_ polyphonically modulatable parameters. See the
/// event's documentation on how to use polyphonic modulation. Also consider configuring the
/// [`ClapPlugin::CLAP_POLY_MODULATION_CONFIG`][crate::prelude::ClapPlugin::CLAP_POLY_MODULATION_CONFIG]
/// constant when enabling this.
///
/// # Important
///
/// After enabling polyphonic modulation, the plugin **must** start sending
/// [`NoteEvent::VoiceTerminated`][crate::prelude::NoteEvent::VoiceTerminated] events to the
/// host when a voice has fully ended. This allows the host to reuse its modulation resources.
pub fn with_poly_modulation_id(mut self, id: u32) -> Self {
self.poly_modulation_id = Some(id);
self
}
/// Set up a smoother that can gradually interpolate changes made to this parameter, preventing
/// clicks and zipper noises.
pub fn with_smoother(mut self, style: SmoothingStyle) -> Self {
// Logarithmic smoothing will cause problems if the range goes through zero since then you
// end up multiplying by zero
let goes_through_zero = match (&style, &self.range) {
(
SmoothingStyle::Logarithmic(_),
FloatRange::Linear { min, max }
| FloatRange::Skewed { min, max, .. }
| FloatRange::SymmetricalSkewed { min, max, .. },
) => *min == 0.0 || *max == 0.0 || min.signum() != max.signum(),
_ => false,
};
nih_debug_assert!(
!goes_through_zero,
"Logarithmic smoothing does not work with ranges that go through zero"
);
self.smoothed = Smoother::new(style);
self
}
/// Run a callback whenever this parameter's value changes. The argument passed to this function
/// is the parameter's new value. This should not do anything expensive as it may be called
/// multiple times in rapid succession, and it can be run from both the GUI and the audio
/// thread.
pub fn with_callback(mut self, callback: Arc<dyn Fn(f32) + Send + Sync>) -> Self {
self.value_changed = Some(callback);
self
}
/// Display a unit when rendering this parameter to a string. Appended after the
/// [`value_to_string`][Self::with_value_to_string()] function if that is also set. NIH-plug
/// will not automatically add a space before the unit.
pub fn with_unit(mut self, unit: &'static str) -> Self {
self.unit = unit;
self
}
/// Set the distance between steps of a [FloatParam]. Mostly useful for quantizing GUI input. If
/// this is set and a [`value_to_string`][Self::with_value_to_string()] function is not set,
/// then this is also used when formatting the parameter. This must be a positive, nonzero
/// number.
pub fn with_step_size(mut self, step_size: f32) -> Self {
self.step_size = Some(step_size);
self
}
/// Use a custom conversion function to convert the plain, unnormalized value to a
/// string.
pub fn with_value_to_string(
mut self,
callback: Arc<dyn Fn(f32) -> String + Send + Sync>,
) -> Self {
self.value_to_string = Some(callback);
self
}
/// Use a custom conversion function to convert from a string to a plain, unnormalized
/// value. If the string cannot be parsed, then this should return a `None`. If this
/// happens while the parameter is being updated then the update will be canceled.
///
/// The input string may or may not contain the unit, so you will need to be able to handle
/// that.
pub fn with_string_to_value(
mut self,
callback: Arc<dyn Fn(&str) -> Option<f32> + Send + Sync>,
) -> Self {
self.string_to_value = Some(callback);
self
}
/// Mark the parameter as non-automatable. This means that the parameter cannot be changed from
/// an automation lane. The parameter can however still be manually changed by the user from
/// either the plugin's own GUI or from the host's generic UI.
pub fn non_automatable(mut self) -> Self {
self.flags.insert(ParamFlags::NON_AUTOMATABLE);
self
}
/// Hide the parameter in the host's generic UI for this plugin. This also implies
/// `NON_AUTOMATABLE`. Setting this does not prevent you from changing the parameter in the
/// plugin's editor GUI.
pub fn hide(mut self) -> Self {
self.flags.insert(ParamFlags::HIDDEN);
self
}
/// Don't show this parameter when generating a generic UI for the plugin using one of
/// NIH-plug's generic UI widgets.
pub fn hide_in_generic_ui(mut self) -> Self {
self.flags.insert(ParamFlags::HIDE_IN_GENERIC_UI);
self
}
}
/// Calculate how many decimals to round to when displaying a floating point value with a specific
/// step size. We'll perform some rounding to ignore spurious extra precision caused by the floating
/// point quantization.
fn decimals_from_step_size(step_size: f32) -> usize {
const SCALE: f32 = 1_000_000.0; // 10.0f32.powi(f32::DIGITS as i32)
let step_size = (step_size * SCALE).round() / SCALE;
let mut num_digits = 0;
for decimals in 0..f32::DIGITS as i32 {
if step_size * 10.0f32.powi(decimals) >= 1.0 {
num_digits = decimals;
break;
}
}
num_digits as usize
}