1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
//! Continuous (or discrete, with a step size) floating point parameters.

use atomic_float::AtomicF32;
use std::fmt::{Debug, Display};
use std::sync::atomic::Ordering;
use std::sync::Arc;

use super::internals::ParamPtr;
use super::range::FloatRange;
use super::smoothing::{Smoother, SmoothingStyle};
use super::{Param, ParamFlags, ParamMut};

/// A floating point parameter that's stored unnormalized. The range is used for the normalization
/// process.
pub struct FloatParam {
    /// The field's current plain value, after monophonic modulation has been applied.
    value: AtomicF32,
    /// The field's current value normalized to the `[0, 1]` range.
    normalized_value: AtomicF32,
    /// The field's plain, unnormalized value before any monophonic automation coming from the host
    /// has been applied. This will always be the same as `value` for VST3 plugins.
    unmodulated_value: AtomicF32,
    /// The field's value normalized to the `[0, 1]` range before any monophonic automation coming
    /// from the host has been applied. This will always be the same as `value` for VST3 plugins.
    unmodulated_normalized_value: AtomicF32,
    /// A value in `[-1, 1]` indicating the amount of modulation applied to
    /// `unmodulated_normalized_`. This needs to be stored separately since the normalized values are
    /// clamped, and this value persists after new automation events.
    modulation_offset: AtomicF32,
    /// The field's default plain, unnormalized value.
    default: f32,
    /// An optional smoother that will automatically interpolate between the new automation values
    /// set by the host.
    pub smoothed: Smoother<f32>,

    /// Flags to control the parameter's behavior. See [`ParamFlags`].
    flags: ParamFlags,
    /// Optional callback for listening to value changes. The argument passed to this function is
    /// the parameter's new **plain** value. This should not do anything expensive as it may be
    /// called multiple times in rapid succession.
    ///
    /// To use this, you'll probably want to store an `Arc<Atomic*>` alongside the parameter in the
    /// parameters struct, move a clone of that `Arc` into this closure, and then modify that.
    ///
    /// TODO: We probably also want to pass the old value to this function.
    value_changed: Option<Arc<dyn Fn(f32) + Send + Sync>>,

    /// The distribution of the parameter's values.
    range: FloatRange,
    /// The distance between discrete steps in this parameter. Mostly useful for quantizing GUI
    /// input. If this is set and if [`value_to_string`][Self::value_to_string] is not set, then
    /// this is also used when formatting the parameter. This must be a positive, nonzero number.
    step_size: Option<f32>,
    /// The parameter's human readable display name.
    name: String,
    /// The parameter value's unit, added after [`value_to_string`][Self::value_to_string] if that
    /// is set. NIH-plug will not automatically add a space before the unit.
    unit: &'static str,
    /// If this parameter has been marked as polyphonically modulatable, then this will be a unique
    /// integer identifying the parameter. Because this value is determined by the plugin itself,
    /// the plugin can easily map
    /// [`NoteEvent::PolyModulation`][crate::prelude::NoteEvent::PolyModulation] events to the
    /// correct parameter by pattern matching on a constant.
    poly_modulation_id: Option<u32>,
    /// Optional custom conversion function from a plain **unnormalized** value to a string.
    value_to_string: Option<Arc<dyn Fn(f32) -> String + Send + Sync>>,
    /// Optional custom conversion function from a string to a plain **unnormalized** value. If the
    /// string cannot be parsed, then this should return a `None`. If this happens while the
    /// parameter is being updated then the update will be canceled.
    ///
    /// The input string may or may not contain the unit, so you will need to be able to handle
    /// that.
    string_to_value: Option<Arc<dyn Fn(&str) -> Option<f32> + Send + Sync>>,
}

impl Display for FloatParam {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match (&self.value_to_string, &self.step_size) {
            (Some(func), _) => write!(f, "{}{}", func(self.value()), self.unit),
            (None, Some(step_size)) => {
                let num_digits = decimals_from_step_size(*step_size);
                write!(f, "{:.num_digits$}{}", self.value(), self.unit)
            }
            _ => write!(f, "{}{}", self.value(), self.unit),
        }
    }
}

impl Debug for FloatParam {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // This uses the above `Display` instance to show the value
        if self.modulated_plain_value() != self.unmodulated_plain_value() {
            write!(f, "{}: {} (modulated)", &self.name, &self)
        } else {
            write!(f, "{}: {}", &self.name, &self)
        }
    }
}

// `Params` can not be implemented outside of NIH-plug itself because `ParamPtr` is also closed
impl super::Sealed for FloatParam {}

impl Param for FloatParam {
    type Plain = f32;

    fn name(&self) -> &str {
        &self.name
    }

    fn unit(&self) -> &'static str {
        self.unit
    }

    fn poly_modulation_id(&self) -> Option<u32> {
        self.poly_modulation_id
    }

    #[inline]
    fn modulated_plain_value(&self) -> Self::Plain {
        self.value.load(Ordering::Relaxed)
    }

    #[inline]
    fn modulated_normalized_value(&self) -> f32 {
        self.normalized_value.load(Ordering::Relaxed)
    }

    #[inline]
    fn unmodulated_plain_value(&self) -> Self::Plain {
        self.unmodulated_value.load(Ordering::Relaxed)
    }

    #[inline]
    fn unmodulated_normalized_value(&self) -> f32 {
        self.unmodulated_normalized_value.load(Ordering::Relaxed)
    }

    #[inline]
    fn default_plain_value(&self) -> Self::Plain {
        self.default
    }

    fn step_count(&self) -> Option<usize> {
        None
    }

    fn previous_step(&self, from: Self::Plain, finer: bool) -> Self::Plain {
        self.range.previous_step(from, self.step_size, finer)
    }

    fn next_step(&self, from: Self::Plain, finer: bool) -> Self::Plain {
        self.range.next_step(from, self.step_size, finer)
    }

    fn normalized_value_to_string(&self, normalized: f32, include_unit: bool) -> String {
        let value = self.preview_plain(normalized);
        match (&self.value_to_string, &self.step_size, include_unit) {
            (Some(f), _, true) => format!("{}{}", f(value), self.unit),
            (Some(f), _, false) => f(value),
            (None, Some(step_size), true) => {
                let num_digits = decimals_from_step_size(*step_size);
                format!("{:.num_digits$}{}", value, self.unit)
            }
            (None, Some(step_size), false) => {
                let num_digits = decimals_from_step_size(*step_size);
                format!("{value:.num_digits$}")
            }
            (None, None, true) => format!("{}{}", value, self.unit),
            (None, None, false) => format!("{value}"),
        }
    }

    fn string_to_normalized_value(&self, string: &str) -> Option<f32> {
        let value = match &self.string_to_value {
            Some(f) => f(string.trim()),
            // In the CLAP wrapper the unit will be included, so make sure to handle that
            None => string.trim().trim_end_matches(self.unit).parse().ok(),
        }?;

        Some(self.preview_normalized(value))
    }

    #[inline]
    fn preview_normalized(&self, plain: Self::Plain) -> f32 {
        self.range.normalize(plain)
    }

    #[inline]
    fn preview_plain(&self, normalized: f32) -> Self::Plain {
        let value = self.range.unnormalize(normalized);
        match &self.step_size {
            Some(step_size) => self.range.snap_to_step(value, *step_size as Self::Plain),
            None => value,
        }
    }

    fn flags(&self) -> ParamFlags {
        self.flags
    }

    fn as_ptr(&self) -> ParamPtr {
        ParamPtr::FloatParam(self as *const _ as *mut _)
    }
}

impl ParamMut for FloatParam {
    fn set_plain_value(&self, plain: Self::Plain) -> bool {
        let unmodulated_value = plain;
        let unmodulated_normalized_value = self.preview_normalized(plain);

        let modulation_offset = self.modulation_offset.load(Ordering::Relaxed);
        let (value, normalized_value) = if modulation_offset == 0.0 {
            (unmodulated_value, unmodulated_normalized_value)
        } else {
            let normalized_value =
                (unmodulated_normalized_value + modulation_offset).clamp(0.0, 1.0);

            (self.preview_plain(normalized_value), normalized_value)
        };

        // REAPER spams automation events with the same value. This prevents callbacks from firing
        // multiple times. This can be problematic when they're used to trigger expensive
        // computations when a parameter changes.
        let old_value = self.value.swap(value, Ordering::Relaxed);
        if value != old_value {
            self.normalized_value
                .store(normalized_value, Ordering::Relaxed);
            self.unmodulated_value
                .store(unmodulated_value, Ordering::Relaxed);
            self.unmodulated_normalized_value
                .store(unmodulated_normalized_value, Ordering::Relaxed);
            if let Some(f) = &self.value_changed {
                f(value);
            }

            true
        } else {
            false
        }
    }

    fn set_normalized_value(&self, normalized: f32) -> bool {
        // NOTE: The double conversion here is to make sure the state is reproducible. State is
        //       saved and restored using plain values, and the new normalized value will be
        //       different from `normalized`. This is not necessary for the modulation as these
        //       values are never shown to the host.
        self.set_plain_value(self.preview_plain(normalized))
    }

    fn modulate_value(&self, modulation_offset: f32) -> bool {
        self.modulation_offset
            .store(modulation_offset, Ordering::Relaxed);

        // TODO: This renormalizes this value, which is not necessary
        self.set_plain_value(self.unmodulated_plain_value())
    }

    fn update_smoother(&self, sample_rate: f32, reset: bool) {
        if reset {
            self.smoothed.reset(self.modulated_plain_value());
        } else {
            self.smoothed
                .set_target(sample_rate, self.modulated_plain_value());
        }
    }
}

impl FloatParam {
    /// Build a new [`FloatParam`]. Use the other associated functions to modify the behavior of the
    /// parameter.
    pub fn new(name: impl Into<String>, default: f32, range: FloatRange) -> Self {
        range.assert_validity();

        Self {
            value: AtomicF32::new(default),
            normalized_value: AtomicF32::new(range.normalize(default)),
            unmodulated_value: AtomicF32::new(default),
            unmodulated_normalized_value: AtomicF32::new(range.normalize(default)),
            modulation_offset: AtomicF32::new(0.0),
            default,
            smoothed: Smoother::none(),

            flags: ParamFlags::default(),
            value_changed: None,

            range,
            step_size: None,
            name: name.into(),
            unit: "",
            poly_modulation_id: None,
            value_to_string: None,
            string_to_value: None,
        }
    }

    /// The field's current plain value, after monophonic modulation has been applied. Equivalent to
    /// calling `param.plain_value()`.
    #[inline]
    pub fn value(&self) -> f32 {
        self.modulated_plain_value()
    }

    /// Enable polyphonic modulation for this parameter. The ID is used to uniquely identify this
    /// parameter in [`NoteEvent::PolyModulation`][crate::prelude::NoteEvent::PolyModulation]
    /// events, and must thus be unique between _all_ polyphonically modulatable parameters. See the
    /// event's documentation on how to use polyphonic modulation. Also consider configuring the
    /// [`ClapPlugin::CLAP_POLY_MODULATION_CONFIG`][crate::prelude::ClapPlugin::CLAP_POLY_MODULATION_CONFIG]
    /// constant when enabling this.
    ///
    /// # Important
    ///
    /// After enabling polyphonic modulation, the plugin **must** start sending
    /// [`NoteEvent::VoiceTerminated`][crate::prelude::NoteEvent::VoiceTerminated] events to the
    /// host when a voice has fully ended. This allows the host to reuse its modulation resources.
    pub fn with_poly_modulation_id(mut self, id: u32) -> Self {
        self.poly_modulation_id = Some(id);
        self
    }

    /// Set up a smoother that can gradually interpolate changes made to this parameter, preventing
    /// clicks and zipper noises.
    pub fn with_smoother(mut self, style: SmoothingStyle) -> Self {
        // Logarithmic smoothing will cause problems if the range goes through zero since then you
        // end up multiplying by zero
        let goes_through_zero = match (&style, &self.range) {
            (
                SmoothingStyle::Logarithmic(_),
                FloatRange::Linear { min, max }
                | FloatRange::Skewed { min, max, .. }
                | FloatRange::SymmetricalSkewed { min, max, .. },
            ) => *min == 0.0 || *max == 0.0 || min.signum() != max.signum(),
            _ => false,
        };
        nih_debug_assert!(
            !goes_through_zero,
            "Logarithmic smoothing does not work with ranges that go through zero"
        );

        self.smoothed = Smoother::new(style);
        self
    }

    /// Run a callback whenever this parameter's value changes. The argument passed to this function
    /// is the parameter's new value. This should not do anything expensive as it may be called
    /// multiple times in rapid succession, and it can be run from both the GUI and the audio
    /// thread.
    pub fn with_callback(mut self, callback: Arc<dyn Fn(f32) + Send + Sync>) -> Self {
        self.value_changed = Some(callback);
        self
    }

    /// Display a unit when rendering this parameter to a string. Appended after the
    /// [`value_to_string`][Self::with_value_to_string()] function if that is also set. NIH-plug
    /// will not automatically add a space before the unit.
    pub fn with_unit(mut self, unit: &'static str) -> Self {
        self.unit = unit;
        self
    }

    /// Set the distance between steps of a [FloatParam]. Mostly useful for quantizing GUI input. If
    /// this is set and a [`value_to_string`][Self::with_value_to_string()] function is not set,
    /// then this is also used when formatting the parameter. This must be a positive, nonzero
    /// number.
    pub fn with_step_size(mut self, step_size: f32) -> Self {
        self.step_size = Some(step_size);
        self
    }

    /// Use a custom conversion function to convert the plain, unnormalized value to a
    /// string.
    pub fn with_value_to_string(
        mut self,
        callback: Arc<dyn Fn(f32) -> String + Send + Sync>,
    ) -> Self {
        self.value_to_string = Some(callback);
        self
    }

    /// Use a custom conversion function to convert from a string to a plain, unnormalized
    /// value. If the string cannot be parsed, then this should return a `None`. If this
    /// happens while the parameter is being updated then the update will be canceled.
    ///
    /// The input string may or may not contain the unit, so you will need to be able to handle
    /// that.
    pub fn with_string_to_value(
        mut self,
        callback: Arc<dyn Fn(&str) -> Option<f32> + Send + Sync>,
    ) -> Self {
        self.string_to_value = Some(callback);
        self
    }

    /// Mark the parameter as non-automatable. This means that the parameter cannot be changed from
    /// an automation lane. The parameter can however still be manually changed by the user from
    /// either the plugin's own GUI or from the host's generic UI.
    pub fn non_automatable(mut self) -> Self {
        self.flags.insert(ParamFlags::NON_AUTOMATABLE);
        self
    }

    /// Hide the parameter in the host's generic UI for this plugin. This also implies
    /// `NON_AUTOMATABLE`. Setting this does not prevent you from changing the parameter in the
    /// plugin's editor GUI.
    pub fn hide(mut self) -> Self {
        self.flags.insert(ParamFlags::HIDDEN);
        self
    }

    /// Don't show this parameter when generating a generic UI for the plugin using one of
    /// NIH-plug's generic UI widgets.
    pub fn hide_in_generic_ui(mut self) -> Self {
        self.flags.insert(ParamFlags::HIDE_IN_GENERIC_UI);
        self
    }
}

/// Calculate how many decimals to round to when displaying a floating point value with a specific
/// step size. We'll perform some rounding to ignore spurious extra precision caused by the floating
/// point quantization.
fn decimals_from_step_size(step_size: f32) -> usize {
    const SCALE: f32 = 1_000_000.0; // 10.0f32.powi(f32::DIGITS as i32)
    let step_size = (step_size * SCALE).round() / SCALE;

    let mut num_digits = 0;
    for decimals in 0..f32::DIGITS as i32 {
        if step_size * 10.0f32.powi(decimals) >= 1.0 {
            num_digits = decimals;
            break;
        }
    }

    num_digits as usize
}